youtube chapter generator
工作流概述
这是一个包含13个节点的复杂工作流,主要用于自动化处理各种任务。
工作流源代码
{
"id": "SCUbdpVPX4USbQmr",
"meta": {
"instanceId": "7c617982c5622c49e1ea217f3ee01da25b7fb42fb9e969ce6e4e1b6c269ad0e5",
"templateCredsSetupCompleted": true
},
"name": "youtube chapter generator",
"tags": [
{
"id": "637Ga13eORejFbTG",
"name": "youtube",
"createdAt": "2025-04-06T16:41:11.086Z",
"updatedAt": "2025-04-06T16:41:11.086Z"
},
{
"id": "tfcUyZ2pGsRZFcje",
"name": "chapters",
"createdAt": "2025-04-06T16:41:28.633Z",
"updatedAt": "2025-04-06T16:41:28.633Z"
}
],
"nodes": [
{
"id": "104fa4ce-cd86-4fff-b31c-0ef37fba6d93",
"name": "When clicking ‘Test workflow’",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-800,
-120
],
"parameters": {},
"typeVersion": 1
},
{
"id": "c3b45480-3098-40f9-a77f-ada54481b590",
"name": "Get Caption ID",
"type": "n8n-nodes-base.httpRequest",
"position": [
-200,
-120
],
"parameters": {
"url": "=https://www.googleapis.com/youtube/v3/captions?part=snippet&videoId={{ $json.id }}",
"options": {},
"authentication": "predefinedCredentialType",
"nodeCredentialType": "youTubeOAuth2Api"
},
"credentials": {
"youTubeOAuth2Api": {
"id": "1TkjUqPfFCQ6NzL7",
"name": "YouTube account"
}
},
"typeVersion": 4.2
},
{
"id": "fe08adc4-e6ef-47ae-a946-1e6d5a85e10e",
"name": "Get Captions",
"type": "n8n-nodes-base.httpRequest",
"position": [
20,
-120
],
"parameters": {
"url": "=https://www.googleapis.com/youtube/v3/captions/{{ $json.items[0].id }}?tfmt=srt",
"options": {},
"authentication": "predefinedCredentialType",
"nodeCredentialType": "youTubeOAuth2Api"
},
"credentials": {
"youTubeOAuth2Api": {
"id": "1TkjUqPfFCQ6NzL7",
"name": "YouTube account"
}
},
"typeVersion": 4.2
},
{
"id": "0e15f334-9ff8-4a7e-85a9-4cf8cf10ea55",
"name": "Extract Captions",
"type": "n8n-nodes-base.extractFromFile",
"position": [
240,
-120
],
"parameters": {
"options": {},
"operation": "text"
},
"typeVersion": 1
},
{
"id": "af99a919-7ebc-4a6c-80be-83e2ffa68d05",
"name": "Structured Captions",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
640,
100
],
"parameters": {
"jsonSchemaExample": "{
\"description\": \"California\"
}"
},
"typeVersion": 1.2
},
{
"id": "414a41a2-0715-4a57-a606-9f3678b2472a",
"name": "Get Video Meta Data",
"type": "n8n-nodes-base.youTube",
"position": [
-420,
-120
],
"parameters": {
"options": {},
"videoId": "={{ $json.video_id }}",
"resource": "video",
"operation": "get"
},
"credentials": {
"youTubeOAuth2Api": {
"id": "1TkjUqPfFCQ6NzL7",
"name": "YouTube account"
}
},
"typeVersion": 1
},
{
"id": "7304d9b1-5956-41c3-b78a-2c409d0aa726",
"name": "Google Gemini Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
460,
100
],
"parameters": {
"options": {},
"modelName": "models/gemini-1.5-flash-8b-exp-0924"
},
"credentials": {
"googlePalmApi": {
"id": "FshILEOmCAPVoGfW",
"name": "Google Gemini(PaLM) Api account 2"
}
},
"typeVersion": 1
},
{
"id": "867a6ad6-0712-4fbf-97fd-ab054b783172",
"name": "Set Video ID",
"type": "n8n-nodes-base.set",
"position": [
-640,
-120
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "568762f7-e496-4550-8567-d49e2ce1676d",
"name": "video_id",
"type": "string",
"value": "r1wqsrW2vmE"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "dcd0c9d7-1a69-45e8-98e9-b7cf7d12734e",
"name": "Update Chapters",
"type": "n8n-nodes-base.youTube",
"position": [
940,
-120
],
"parameters": {
"title": "={{ $('Get Video Meta Data').item.json.snippet.title }}",
"videoId": "={{ $('Get Captions').item.json.items[0].snippet.videoId }}",
"resource": "video",
"operation": "update",
"categoryId": "22",
"regionCode": "US",
"updateFields": {
"description": "={{ $json.output.description }}
Chapters
{{ $json.output.description }}"
}
},
"credentials": {
"youTubeOAuth2Api": {
"id": "1TkjUqPfFCQ6NzL7",
"name": "YouTube account"
}
},
"typeVersion": 1,
"alwaysOutputData": true
},
{
"id": "916629c4-6e49-4432-88e8-626748cb3d24",
"name": "Tag Chapters in Description",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
460,
-120
],
"parameters": {
"text": "=This is an srt format data. please classify this data into chapters
based upon this transcript
{{ $json.data }}
{
\"description\":\"00:00 Introduction
02:15 Topic One
05:30 Topic Two
10:45 Conclusion\"
}
",
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.6
},
{
"id": "b0f56d68-b787-4ccc-8bb5-bdb5b04c3ae4",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
-680,
-200
],
"parameters": {
"width": 1040,
"height": 440,
"content": "
## Get Captions"
},
"typeVersion": 1
},
{
"id": "0bcee6b5-0e8b-4f85-8f83-c829e785467a",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
378,
-200
],
"parameters": {
"color": 4,
"width": 420,
"height": 440,
"content": "## Generate Chapters
"
},
"typeVersion": 1
},
{
"id": "0f90f6ec-2154-4945-b262-6531fef2334f",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
820,
-200
],
"parameters": {
"color": 6,
"width": 440,
"height": 440,
"content": "## Update Description
"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "27125160-7c64-4431-b243-832c1ae29d29",
"connections": {
"Get Captions": {
"main": [
[
{
"node": "Extract Captions",
"type": "main",
"index": 0
}
]
]
},
"Set Video ID": {
"main": [
[
{
"node": "Get Video Meta Data",
"type": "main",
"index": 0
}
]
]
},
"Get Caption ID": {
"main": [
[
{
"node": "Get Captions",
"type": "main",
"index": 0
}
]
]
},
"Extract Captions": {
"main": [
[
{
"node": "Tag Chapters in Description",
"type": "main",
"index": 0
}
]
]
},
"Get Video Meta Data": {
"main": [
[
{
"node": "Get Caption ID",
"type": "main",
"index": 0
}
]
]
},
"Structured Captions": {
"ai_outputParser": [
[
{
"node": "Tag Chapters in Description",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"Google Gemini Chat Model": {
"ai_languageModel": [
[
{
"node": "Tag Chapters in Description",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Tag Chapters in Description": {
"main": [
[
{
"node": "Update Chapters",
"type": "main",
"index": 0
}
]
]
},
"When clicking ‘Test workflow’": {
"main": [
[
{
"node": "Set Video ID",
"type": "main",
"index": 0
}
]
]
}
}
}
功能特点
- 自动检测新邮件
- AI智能内容分析
- 自定义分类规则
- 批量处理能力
- 详细的处理日志
技术分析
节点类型及作用
- Manualtrigger
- Httprequest
- Extractfromfile
- @N8N/N8N Nodes Langchain.Outputparserstructured
- Youtube
复杂度评估
配置难度:
维护难度:
扩展性:
实施指南
前置条件
- 有效的Gmail账户
- n8n平台访问权限
- Google API凭证
- AI分类服务订阅
配置步骤
- 在n8n中导入工作流JSON文件
- 配置Gmail节点的认证信息
- 设置AI分类器的API密钥
- 自定义分类规则和标签映射
- 测试工作流执行
- 配置定时触发器(可选)
关键参数
| 参数名称 | 默认值 | 说明 |
|---|---|---|
| maxEmails | 50 | 单次处理的最大邮件数量 |
| confidenceThreshold | 0.8 | 分类置信度阈值 |
| autoLabel | true | 是否自动添加标签 |
最佳实践
优化建议
- 定期更新AI分类模型以提高准确性
- 根据邮件量调整处理批次大小
- 设置合理的分类置信度阈值
- 定期清理过期的分类规则
安全注意事项
- 妥善保管API密钥和认证信息
- 限制工作流的访问权限
- 定期审查处理日志
- 启用双因素认证保护Gmail账户
性能优化
- 使用增量处理减少重复工作
- 缓存频繁访问的数据
- 并行处理多个邮件分类任务
- 监控系统资源使用情况
故障排除
常见问题
邮件未被正确分类
检查AI分类器的置信度阈值设置,适当降低阈值或更新训练数据。
Gmail认证失败
确认Google API凭证有效且具有正确的权限范围,重新进行OAuth授权。
调试技巧
- 启用详细日志记录查看每个步骤的执行情况
- 使用测试邮件验证分类逻辑
- 检查网络连接和API服务状态
- 逐步执行工作流定位问题节点
错误处理
工作流包含以下错误处理机制:
- 网络超时自动重试(最多3次)
- API错误记录和告警
- 处理失败邮件的隔离机制
- 异常情况下的回滚操作